Nuprl Lemma : local-prior-state-accumulate 11,40

es:ES, AT:Type, X:AbsInterface(A), base:Tf:(TAT), e:E.
prior-state(f;base;X;e) = list_accum(x,a.f(x,a);base;es-prior-interface-vals(es;X;e))  T 
latex


Definitions(e <loc e'), e c e', e loc e' , sender(e), s ~ t, A List, n+m, -n, Outcome, False, i  j , A  B, first(e), pred(e), pred!(e;e'), kind(e), loc(e), SWellFounded(R(x;y)), x:AB(x), (x  l), n - m, #$n, {T}, a < b, constant_function(f;A;B), r  s, e < e', val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , , Msg(M), kindcase(ka.f(a); l,t.g(l;t) ), xt(x), Knd, EState(T), EOrderAxioms(Epred?info), Id, IdLnk, EqDecider(T), x.A(x), T, Unit, , p q, p  q, p  q, e = e', deq-member(eq;x;L), a = b, a = b, qeq(r;s), q_less(a;b), q_le(r;s), eq_atom$n(x;y), [d], a < b, x f y, a < b, null(as), x =a y, (i = j), i j, i <z j, p =b q, True, f(x)?z, type List, P  Q, P & Q, P  Q, {x:AB(x)} , x:A.B(x), Void, Top, if b then t else f fi , case b of inl(x) => s(x) | inr(y) => t(y), x  dom(f), strong-subtype(A;B), x,yt(x;y), as @ bs, [car / cdr], [], X(e), E(X), a:A fp B(a), tt, b, e  X, prior(X), ff, (e < e'), prior-state(f;base;X;e), list_accum(x,a.f(x;a);y;l), f(a), es-prior-interface-vals(es;X;e), t.1, let x,y = A in B(x;y), left + right, b, x:A  B(x), , P  Q, , <ab>, AbsInterface(A), Type, ES, s = t, t  T, A, x:AB(x), E, x:AB(x)
Lemmaslist accum wf, append wf, es-interface-val wf, es-E-interface wf, es-prior-interface wf, subtype rel wf, top wf, es-interface-subtype rel, es-interface wf, member wf, es-E wf, es-is-interface wf, assert of bnot, eqff to assert, iff transitivity, bool wf, not wf, assert wf, eqtt to assert, es-prior-interface-vals-property, squash wf, true wf, es-prior-interface-vals wf, rev implies wf, iff wf, event system wf, deq wf, unit wf, IdLnk wf, Id wf, EOrderAxioms wf, EState wf, Knd wf, kindcase wf, Msg wf, nat wf, rationals wf, val-axiom wf, cless wf, qle wf, constant function wf, guard wf, es-causl wf, nat ind tp, es-causl-swellfnd, strongwellfounded wf, pred! wf, loc wf, es-local-prior-state wf, nat properties, ge wf, es-interface-val wf2, es-E-interface-subtype rel, list accum append, es-prior-interface-causl

origin